Skip to main content

Personal Genetics - Code of Practice

This blog is about personal genetics and disease prevention - the EUROGENE eTEN project was set up and funded by the EU to establish the infrastructure to deliver personal genetics services via practitioner or direct to consumer.

The aim of the blog will be to report on progress of the project and comment on relevant research / developments in related areas. One of the tasks of the project was a review of the European regulatory framework - this has been completed and will be summarised in a later blog (the full review has also been submitted for publication.

The main finding is the absence of formal regulations in place now and the probability that this unclear situation will not change for some time. Meanwhile personal genetics services roar ahead, with prices falling and genome coverage increasing. Our opinion is that we should follow and promote the Industry Code of Practice proposed by the UK Human Genetics Commission (HGC). This code was developed by academics, regulators, industry members and medical stakeholders to cover all aspects including testing, marketing, customer support, quality of information. In the absence of formal regulation we welcome the code and feel very strongly that the customer (both the practitioner and the end-user) should be fully informed about all aspects of the genetic testing services and all information should be easily available online. The first thing that any potential user of a genetic test, is full disclosure and transparency and we also feel that all companies should protect both the industry and consumers by following the HGC guidelines

“Common Framework of Principles for direct-to-consumer genetic testing services”

Claims must be accurate (promotional and technical), evidence transparent
• Genetic variants tested must have been clinically validated
• Risk assessments must use accepted methods and be transparent
• Clarity on privacy and use of customer’s DNA
• Full and clear information for the customer to understand the test including accuracy and limitations
• Recommendations to purchase follow-on products (e.g. supplements) must be fully and transparently supported by scientific evidence
• For some tests professional genetic and medical help should be available if needed
• Tests should not be supplied DTC to adults unable to provide informed consent

Comments

Popular posts from this blog

Celiac disease – Genetic testing and clinical utility

Celiac disease is a digestive disease that damages the small intestine and interferes with absorption of nutrients from food. People who have celiac disease cannot tolerate gluten, a protein in wheat, rye, and barley. Gluten is found mainly in foods but may also be found in everyday products such as medicines, vitamins, and lip balms. When people with celiac disease eat foods or use products containing gluten, their immune system responds by damaging or destroying villi—the tiny, fingerlike protrusions lining the small intestine. Villi normally allow nutrients from food to be absorbed through the walls of the small intestine into the bloodstream. Without healthy villi, a person becomes malnourished, no matter how much food one eats. Celiac disease is both a disease of malabsorption—meaning nutrients are not absorbed properly—and an abnormal immune reaction to gluten. Celiac disease is also known as celiac sprue, nontropical sprue, and gluten-sensitive enteropathy. Celiac disease is ge…

Genetic testing and potential harm: DTC or trust me I’m a doctor?

Recently at a couple of conferences (European Human Genetics conference and Consumer Genetics Conf) there have been various speakers questioning DTC genetics and calling for all health related personal genetics to be delivered through medical practitioners. I argued in the past that unregulated tests delivered through practitioners actually have the potential for more harm, not less. By coincidence last week some discrepancies in a DTC and a via MD test were pointed out to me – and they seem topical. Breast feeding has many benefits one of which appears to be increased IQ scores – however not all studies agree, some indicating that results may be confounded by maternal intelligence (see Wikipedia). Sometimes inconsistencies in associating an action with an outcome can be resolved by looking at genetic variation (which tends to increase the error bars when not accounted for). So in 2007 some headlines were made when a study was published by Caspi’s group (PNAS, open access) reporting …

Nutrigenetics–a little bit of history, but no miracles

Reading The $1,000 Genome by Kevin Davies, as expected it’s a fascinating story and right at the beginning in Chapter 1 there was something that I liked. The first personal genome to be sequenced and interpreted was that of Jim Watson (Craig Venter was first but no interpretation). Davies describes the presentation of Watson’s genome to the man himself and reports that the sequencing was performed by 454 and the interpretation was handled by the team directed by Richard Gibbs of the Baylor Genome Center. Watson’s genome inventory, for example, revealed 310 genes with likely mutations and 23 with known disease causing mutations, increasing his risk for cancer and heart disease. The Baylor team recommended that he should take folic acid and other vitamins and minimize his exposure to sunlight, particularly during his daily tennis matches. p19So there you have it, the first advice based on the first interpretation of a human genome sequence was nutrigenetic!But then I read later in the b…